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ABSTRACT 

The development of metrics for the comparison of data obtained from measured synthetic aperture 

sonar (SAS) data or from numerical models is investigated.  Metrics are needed for quantitative 

comparisons for signals obtained from either different models, the same model with omitted physics, 

controlled experiments, or actual operational MCM systems.  Specifically, candidate metrics for 

model-model comparisons are examined here with a goal to consider raw data prior to its reduction to 

data products, which may be suitable for input to classification schemes.  The investigated metrics are 

then applied to model-data comparisons. 

INTRODUCTION 

Metrics for quantitative comparison of acoustic color templates were considered under ONR 

Award N00014-14-1-0288.  An acoustic color (AC) template displays target strength as a function of 

frequency and target-centered aspect angle.  In that research, it was found that the maximum value of 

the magnitude of a simple 2D cross-correlation of two AC templates appeared to be an adequate metric 

for model-model comparisons in the absences of injected noise.  Model-data comparisons suggested 

additional metrics were needed due to uncertainties within the measurements (e.g., signal-to-noise 

ratio) or due to the acquisition of only a limited section of a full 360° acoustics color template.  During 

FY15, target isolation techniques were applied to the TREX13 data, which led to isolated target 

signatures for more than 25 targets.  For each target, the isolated signatures were combined to form a 

pseudo-circular SAS data and an ultimately AC template.  Instead of working with these AC templates, 

the current research worked directly with isolated target signatures. 

The metrics considered here are based on an extension of Parseval’s theorem to comparisons 

between signals from possibly different targets or the same target in different orientations.  Let a time-

dependent isolated scattered signal be denoted by 𝑠𝑖(𝑡) with time 𝑡.  Its frequency-domain Fourier 

transform is 𝑆𝑖(𝑓) = 𝐹{𝑠𝑖(𝑡)} with frequency 𝑓.  The subscript here denotes the 𝑖th signal from a 

collection of scattered signals.  The total power in a signal is the same whether computed in the time 

domain or the frequency domain.  Parseval’s theorem states that a signal satisfies 

∫ |𝑠𝑖(𝑡)|2𝑑𝑡 = ∫ |𝑆𝑖(𝑓)|2∞

−∞
𝑑𝑓

∞

−∞
.         (1) 

To exploit Eq. (1), it is convenient to write |𝑠𝑖|2 = |𝑠𝑖||𝑠𝑖| = 𝑠𝑖𝑠𝑖
∗ where the last equality introduces the 

complex conjugate 𝑠𝑖
∗ (and likewise for the right-hand-side of Eq. (1)).  Rewriting Eq. (1), where the 

integrand of is replaced by its complex product, one has 

∫ 𝑠𝑖(𝑡)𝑠𝑖
∗(𝑡)𝑑𝑡 = ∫ 𝑆𝑖(𝑓)𝑆𝑖

∗(𝑓)
∞

−∞
𝑑𝑓

∞

−∞
.        (2) 
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Now, consider a possibly second signal and define the “pseudo-” total power defined as 

〈𝑖, 𝑗〉 = ∫ 𝑠𝑖(𝑡)𝑠𝑗
∗(𝑡)𝑑𝑡

∞

−∞
          (3) 

or 

〈𝑖, 𝑗〉 = ∫ 𝑆𝑖(𝑓)𝑆𝑗
∗(𝑓)

∞

−∞
𝑑𝑓.         (4) 

If 𝑖 is the same as 𝑗, then Eqs. (3) and (4) reduce to Parseval’s theorem.  To compare 〈𝑖, 𝑗〉, to the 

results of cross-correlation 𝑐𝑜𝑟𝑟(𝑠𝑖 , 𝑠𝑗) = 𝐹−1{𝑆𝑖𝑆𝑗
∗}, define the normalized result 

[𝑖, 𝑗] =
〈𝑖,𝑗〉

√〈𝑖,𝑖〉〈𝑗,𝑗〉
           (5) 

where the normalized cross-correlation is similar to Eq. (5) with 〈𝑖, 𝑗〉 understood to be the maximum 

value in the magnitude of an inverse Fourier transform of the product of 𝑆𝑖(𝑓) and 𝑆𝑗
∗(𝑓). 

To examine the consequences of Eqs. (3) and (4), the target-in-the-environment response (TIER) 

model is used to simulate the scattering from targets under a number of conditions.  The environment 

is taken to be that of TREX13 with water above a medium-sand sediment.  The density and sound 

speed of water are 𝜌 = 1000 kg/m3 and 𝑐 = 1530 m/s; while, the sediment’s density, sound speed, 

and loss parameter are 𝜌 = 2000 kg/m3, 𝑐 = 1694 m/s, and 𝛿 = 0.008, respectively.  The source and 

receiver are co-located at 𝑧 = 4 m above the water-sediment boundary, and targets were placed at 

horizontal ranges of 10 and 12 m.  The signal transmitted by the source is a linear-frequency-

modulated (LFM) chirp with a 16 kHz carrier frequency and 30 kHz of bandwidth.  The magnitudes of 

the pulse-compressed scattered signal are displayed in Figure 1 where the targets are a solid aluminum 

sphere and cylinder.  The radii of the targets are 0.1524 m and the cylinder is 0.61 m in length.  The 

source, receiver, and cylinder are oriented to give broadside scattering.  TIER simulations were 

performed for free-field scattering where only the direct path (i.e., in the TIER Path 1) is included and 

for proud targets where four ray paths are included.  Thus, eight signals were generated. 

To facilitate discussion of these signals, a labeling scheme is required.  For signals associated with 

the spherical or cylindrical targets, the initial letter in the label is either “S” or “C”.  The next number 

indicates the number of paths included in a simulation; for example, “S1” is for the spherical target and 

only direct path scattering.  Finally, the last three characters indicate the horizontal range to the target, 

e.g., “h10”.  These labels are used in the following tables. 

Table 1 contains the values computed from Eq. (5) where the cross-correlations of the signals are 

computed.  Entries in the table are color-coded to aid in discussing the results.  First, the diagonal 

entries are unity as expected from the normalization imposed by Eq. (5).  The largest non-diagonal 

entries (red) occur for scattering in the free-field, where either the spherical or cylindrical target is 

simply translated by 2 meters.  An interesting result is that the scattered signal from the proud spherical 

target at 10 m (S4h10) and at 12 m (S4h12) appear to have fairly high correlations with the cylindrical 

target at the same distance (green).  This is a consequence of the radii of the targets and the cylinder is 

at a broadside orientation, which means the phase delays for paths 2, 3, and 4 are identical for the 

sphere and cylinder. 
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 S1h10 S1h12 S4h10 S4h12 C1h10 C1h12 C4h10 C4h12 

S1h10 1.000 0.993 0.541 0.490 0.745 0.741 0.436 0.447 

S1h12  1.000 0.535 0.488 0.738 0.745 0.437 0.458 

S4h10   1.000 0.550 0.768 0.774 0.822 0.476 

S4h12    1.000 0.644 0.637 0.571 0.828 

C1h10     1.000 0.991 0.742 0.650 

C1h12      1.000 0.748 0.637 

C4h10       1.000 0.633 

C4h12        1.000 

Table 1.  Values estimated from Eq. (5) where cross-correlations are computed.  By construction, the 

table is symmetric, so lower triangular elements are omitted.  The direct path scattering from the 

spherical or cylindrical target at a 10 m shows a high cross-correlation (red) with the same target at 

its 12 m horizontal range. 

 

Table 2 is evaluated from Eqs. (3) and (5) with the additional constraint that only real signals are used, 

i.e., 𝑠𝑖𝑠𝑗
∗ = ℜ(𝑠𝑖)ℜ(𝑠𝑗).  That is, the complex conjugate of the signal is not used.  In Table 2, the red 

entries highlight very small numbers.  These can easily be understood from inspection of Figure 1, 

which shows that any scattered signal for a target at 10 m is nearly quiescent after 2 ms and hence its 

multiplication with a signal for a target at 12 m is negligible.   

 

 S1h10 S1h12 S4h10 S4h12 C1h10 C1h12 C4h10 C4h12 

S1h10 1.000 0.002 0.541 0.003 0.628 0.002 0.285 0.002 

S1h12  1.000 0.002 0.411 0.007 0.628 0.000 0.179 

S4h10   1.000 0.000 0.318 0.003 0.657 0.003 

S4h12    1.000 0.003 0.217 0.001 0.640 

C1h10     1.000 0.002 0.456 0.014 

C1h12      1.000 0.005 0.361 

C4h10       1.000 0.008 

C4h12        1.000 

Table 2.  Values estimated from Eq. (5) where Eq. (3) is used for 〈𝑖, 𝑗〉.  By construction, the table is 

symmetric, so the lower triangular elements are omitted.  The light blue entries are a result that the 

direct path scattering align and thus are re-enforced through the multiplication. 

 

Table 3 is evaluated from Eqs. (3) and (5) with the additional constraint that the magnitudes of the 

signals are used.  That is, the complex conjugate of the signal is not used.  In Table 3, the red entries 

again highlight small numbers.  These can easily be understood from inspection of Figure 1, which 

shows that any scattered signal for a target at 10 m is nearly quiescent after 2 ms and hence its 

multiplication with a signal for a target at 12 m is nearly zero.  Note the larger values observed in 
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Table 3 than in Table 2 are a result of the conversion of the integrals to discrete summations where the 

summands for Table 3 are always positive while some of the summands for Table 2 are negative.  

 

 S1h10 S1h12 S4h10 S4h12 C1h10 C1h12 C4h10 C4h12 

S1h10 1.000 0.019 0.630 0.018 0.753 0.019 0.488 0.018 

S1h12  1.000 0.018 0.592 0.024 0.756 0.021 0.463 

S4h10   1.000 0.018 0.472 0.017 0.775 0.019 

S4h12    1.000 0.022 0.446 0.019 0.787 

C1h10     1.000 0.022 0.559 0.028 

C1h12      1.000 0.021 0.494 

C4h10       1.000 0.020 

C4h12        1.000 

Table 3.  Values estimated from Eq. (5) where Eq. (3) is used for 〈𝑖, 𝑗〉.  By construction, the table is 

symmetric, so the lower triangular elements are omitted.  The light blue entries are a result that direct 

path scattering align and thus are re-enforced through the multiplication of the magnitudes. 

 

Table 4 is evaluated from Eqs. (3) and (5).  Here, the complex conjugate of the signal is used, so Table 

4 represents the time-domain Parseval’s theorem result.  In Table 4, the red entries again highlight 

small numbers.  These can easily be understood from inspection of Figure 1, which shows that any 

scattered signal for a target at 10 m is nearly quiescent after 2 ms and hence its multiplication with a 

signal for a target at 12 m is nearly zero.  The discrete summations from the conversion of the integral 

in Eq. (3) is a coherent summation of complex summands.  The scattering geometries for the sphere 

and cylinder were constructed to give essentially the same path lengths for all paths, and the broadside 

orientation of the cylinder yields a specular scattering return that is similar to the specular return from  

 S1h10 S1h12 S4h10 S4h12 C1h10 C1h12 C4h10 C4h12 

S1h10 1.000 0.024 0.680 0.022 0.911 0.025 0.600 0.022 

S1h12  1.000 0.022 0.627 0.029 0.911 0.025 0.554 

S4h10   1.000 0.022 0.599 0.022 0.941 0.023 

S4h12    1.000 0.031 0.543 0.025 0.951 

C1h10     1.000 0.025 0.609 0.032 

C1h12      1.000 0.024 0.531 

C4h10       1.000 0.025 

C4h12        1.000 

Table 4.  Values estimated from Eq. (5) where Eq. (3) is used for 〈𝑖, 𝑗〉.  By construction, the table is 

symmetric, so the lower triangular elements are omitted.  The light blue entries are a result that direct 

path align and thus are re-enforced through the multiplication of the magnitudes. 
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the sphere.   In addition, the dominate surface elastic wave is associated with a Rayleigh wave 

resonance in the frequency range considered, and repeated circumnavigations of the surface wave on 

the sphere and cylinder traverse a similar path length.  Hence, the coherent processing enhances the 

comparisons of the scattering from the sphere and cylinder, which leads to the blue entries in Table 4. 

The final result for the frequency-domain Parseval’s theorem is computed from Eqs. (4) and (5), 

and are tabulated in Table 5.  One immediately sees that many of the entries exceeds 0.900.  This is 

simply a manifestation of Eq. (5) summing up the acoustic energy in all frequencies without using 

phase information; whereas the cross-correlation results in Table 1 use the maximum value from the 

magnitude of the cross-correlation (i.e., the amplitude where 𝑠𝑖 and 𝑠𝑗 have the best match).  For finite 

duration scattered time signals, the frequency-domain Parseval’s theorem may have limits. 

 S1h10 S1h12 S4h10 S4h12 C1h10 C1h12 C4h10 C4h12 

S1h10 1.000 1.000 0.902 0.908 0.900 0.900 0.787 0.806 

S1h12  1.000 0.902 0.908 0.900 0.900 0.787 0.806 

S4h10   1.000 0.876 0.924 0.924 0.919 0.834 

S4h12    1.000 0.916 0.916 0.825 0.919 

C1h10     1.000 1.000 0.908 0.928 

C1h12      1.000 0.908 0.928 

C4h10       1.000 0.860 

C4h12        1.000 

Table 5.  Values estimated from Eq. (5) where Eq. (4) is used for 〈𝑖, 𝑗〉.  By construction, the table is 

symmetric, so the lower triangular elements are omitted.  The light blue entries are a result that direct 

path align and thus are re-enforced through the multiplication of the magnitudes. 

 

In the development of Tables 1-5, only eight scattered signals from two targets were considered.  

The scattering geometry and targets used for the comparison for selected as these are often use in 

benchmark comparisons (i.e., spherical target or finite-length cylinder at broadside).  The sequel, the 

metrics developed in Eqs. (2) - (5) as well as 2D cross-correlation are applied to slices of data from 

either TIER-based SAS simulations or measurements (i.e., TREX13 data).  A slice of data consists of 

81 signals with a 0.5° spacing along a linear SAS path.  The signals are 30 ms in duration and a time 

offset is chosen based on an estimate of the earliest expected arrival from a roundtrip, time-of-flight 

calculation. 

WORK COMPLETED    

A.  Description of TREX13 Data: 

The TREX13 data were collected by scanning a sonar tower along a straight 42-m rail.  Targets 

were placed at horizontal ranges from 5 to 40 m in 5 m increments.  Table 6 contains the ranges where 

a given target had been placed during TREX13.  For an axially symmetric target such as a water-filled, 

155-mm howitzer at a given location, the target was rotated from −80° (tail towards the rail) to 80° 

(nose towards the rail) in 20° increments.  For a non-axially symmetric target, a complete target 
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rotation results in 18 passes of the sonar tower along the rail to collect SAS data sufficient for a 

complete AC template.  After matching-filtering with a replica of the transmitted signal, pulse-

compressed and calibrated target signatures were isolated.  Nine linear SAS data were combined into 

pseudo-CSAS data, which required processing to mitigate range-migration.  The pseudo-CSAS data 

are then converted to an AC template.  The current research steps back from the pseudo-CSAS data to 

directly use the isolated target signatures.  This then yields 711 sets of data for proud targets and 144 

sets of data for partially buried targets.  Only the proud target data are used here.  For a given run along 

the rail, 1600 pings at a 2.5 cm spacing are recorded with a 100 kHz sample rate for a duration of 80 

ms.  Thus, the size of a SAS data set is 1600×8000.  To make the data manageable, it is decimated by 

selecting those pings that correspond to target-centered angular values in the range ±20° in 0.5° 

increments (i.e., 81 pings are used).  The data are also reduced to a 30 ms segment by setting a time 

offset based on a time delay for closest approach to a target.  These restrictions led to a reduction in the 

size of data to an 81×3000 slice.  Figure 2a depicts the nine slices of data for target17 in Table 6, 

which is a proud 2:1 solid aluminum cylinder. 

Target Range Target Range Target Range Target Range 

tgt01 35 tgt09 10, 15, 20, 35 tgt16 15, 25, 30 tgt23 5, 15, 20 

tgt02 35 tgt10 20, 25, 30 tgt17 10 tgt24 5, 15, 20 

tgt03 35 tgt11 10, 20, 25, 35 tgt18 15 tgt25 5, 15, 20, 25 

tgt05 25, 30, 40 tgt12 15 tgt19 20 tgt28 15, 25, 30 

tgt06 25, 35, 40 tgt13 15, 25, 35 tgt20 10, 15 30, 40 tgt29 15, 20, 35 

tgt07 30, 35, 40 tgt14 15, 20, 25 tgt21 10, 15, 25, 30 tgt30 5, 15, 20 

tgt08 5, 25, 30, 40 tgt15 15, 20, 25 tgt22 5, 20, 30, 40   

Table 6.  Target enumeration and the horizontal ranges for deployment during TREX13 are 

displayed. 

 

B.  Description of TIER Simulations: 

The target-in-the-environment response (TIER) model was used to simulate the scattering of a 1-30 

kHz chirp from the nine targets listed in Table 7.  The targets were placed at horizontal ranges of 5 to 

40 m in 5 m increments, and at each range the targets were rotated through the same ±80° in 20° 

increments.  The source-receiver-target geometries were set up to replicate a ±20° range with the same 

0.5° sampling of the slices of TREX13 data shown in Figure 2.  Signals were then generated for a 30 

ms time window, which is also sampled at 100 kHz. 

TIER was used in a number of simulations.  First, free-field scattering from the targets was 

predicted by including only the direct path.  Figure 2b displays the predicted pulse-compressed 

scattering from a 2:1 solid aluminum cylinder.  Second, the scattering from the same targets lying 

proud on a sand sediment with environmental properties from TREX13 conditions was simulated.  

This includes four paths: (1) the direct path, (2) two bistatic scattering paths with a single bounce off 

the water-sediment interface, and (3) a backscattering path that interacts with the water-sediment 

interface twice.  Figure 2c depicts the scattering from the same cylinder.  Third, the simulations were 

performed for the full target response and for the target response decomposed into a rigid response and 
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an elastic response.  For targets of nearly the same size (e.g., sim06 - sim09 of Table 7), their rigid 

responses may be quite similar, but their elastic behavior may be sufficiently different to permit a 

classifier to exploit the decomposition of the responses.  In total, 5184 sets of simulated date were 

generated with the same size as the slices of TREX13 data (i.e., 81×3000). 

Target Description of target 

sim01 2:1 solid aluminum cylinder 

sim02 water-filled scuba tank without stem 

sim03 155-mm howitzer, filled with air, end cap 

sim04 155-mm howitzer, filled with water, end cap 

sim05 155-mm howitzer, no end cap 

sim06 105-mm bullet-shaped artillery shell, filled with air 

sim07 105-mm bullet-shaped artillery shell, filled with water 

sim08 100-mm solid aluminum replica of artillery shell 

sim09 100-mm solid stainless steel replica of artillery shell 

Table 7.  Targets used in the TIER simulations for the metrics study. 

 

C. Four Potential Metrics: 

Four potential metrics were investigated for model-model comparisons, and then these metrics 

were applied to model-data comparisons.  One metric utilized the 2D cross-correlation of slices of 

data.  The other three metrics are based on total power in the element-by-element matrix product of 

two slices of data.  Each metric is defined in the following. 

The first metric is the conventional method of extracting the maximum value from the absolute 

value of a 2D cross-correlation of slices of data.  Let 𝑠𝑖(𝑡, 𝜃) and 𝑠𝑗(𝑡, 𝜃) represent two slices in the 

time and target-centered angular domain.  Let 𝑆𝑖(𝑓, 𝜗) and 𝑆𝑗(𝑓, 𝜗) represent the 2D Fourier 

transforms of 𝑠𝑖 and 𝑠𝑗, respectively.  Then, this metric can be written as 

〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐 =
𝑚𝑎𝑥|𝐹2

−1{𝑆𝑖𝑆𝑗
∗}|

√𝑚𝑎𝑥|𝐹2
−1{𝑆𝑖𝑆𝑖

∗}|𝑚𝑎𝑥|𝐹2
−1{𝑆𝑗𝑆𝑗

∗}|

 

where 𝐹2
−1{… } is the 2D inverse Fourier transform and 𝑆𝑗

∗ is the complex conjugate of 𝑆𝑗.  By 

construction, one has 0 ≤ 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐 ≤ 1. 

The remaining three metrics were constructed from the notion of total power.  Parseval’s theorem 

is 

∫ |𝑠(𝑡)|2𝑑𝑡 =
∞

−∞

∫ |𝑆(𝑓)|2𝑑𝑓
∞

−∞
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which states that the total power can be computed in either the time domain or the frequency domain.  

Let 𝑠𝑖 ∘ 𝑠𝑗 represent the element-by-element matrix multiplication of the slices 𝑠𝑖 and 𝑠𝑗.  The first 

metric based on total power can be written as 

〈𝑠𝑖 , 𝑠𝑗〉1 =
|∑ 𝑠𝑖 ∘ 𝑠𝑗|

√∑ 𝑠𝑖 ∘ 𝑠𝑖 ∑ 𝑠𝑗 ∘ 𝑠𝑗

 

where ∑ 𝑠𝑖 ∘ 𝑠𝑗 represents the summation of the elements of the matrix.  The normalization is again 

such that 0 ≤ 〈𝑠𝑖 , 𝑠𝑗〉1 ≤ 1.  For real-valued data, when 𝑖 = 𝑗, the numerator in 〈𝑠𝑖 , 𝑠𝑗〉1 is essentially a 

discrete representation of the left-hand-side of Parseval’s theorem (i.e., |𝑠|2 = 𝑠2) averaged over an 

angular swath.  That is, the summation over time is a measure of total power and the summation over 

angular swath gives the total power in the slice of data.  When the slices of data are different, then 

elements of 𝑠𝑖 ∘ 𝑠𝑗 may be negative and in fact the summation may be negative. 

For the right-hand-side of Parseval’s theorem, the real-valued data are Fourier transformed from 

the time domain into the frequency domain.  This results in complex-valued signals and one has |𝑆|2 =
|𝑆||𝑆|.  Let |𝑆𝑖| ∘ |𝑆𝑗| represent the element-by-element multiplication of the absolute values of the 

elements of 𝑆𝑖 and 𝑆𝑗.  The second metric becomes 

〈𝑠𝑖 , 𝑠𝑗〉2 =
∑|𝑆𝑖| ∘ |𝑆𝑗|

√∑|𝑆𝑖| ∘ |𝑆𝑖| ∑|𝑆𝑗| ∘ |𝑆𝑗|

 

with the summation indicating that all elements are to be summed (i.e., an angular average of a 

frequency-domain estimate of the total power in a slice). 

The third and final metric utilized complex-valued time signals.  Let 𝑐𝑖 be the complex-valued 

signal associated with 𝑠𝑖.  𝑐𝑖 may be obtained from a Hilbert transform, which is often applied to 

generate the envelop of a time signal.  This metric has the form 

〈𝑠𝑖 , 𝑠𝑗〉3 =
∑|𝑐𝑖| ∘ |𝑐𝑗|

√∑|𝑐𝑖| ∘ |𝑐𝑖| ∑|𝑐𝑗| ∘ |𝑐𝑗|

 

As in previous metrics, the summation in 〈𝑠𝑖 , 𝑠𝑗〉3 represents a summation over both time and angle.  

This is then again a measure of the total power in a slice. 

D.  Model-Model Comparisons 

When comparing the predictions of models, it is assumed that the same scattering scenario has 

been modeled (i.e., the same environment, target, and scattering geometry).  The comparison can be 

between distinct independent models (e.g., TIER and PC-SWAT) or a single model executed with 

limits on the included physics.  In the former, one is trying to assess whether the independent models 

capture the same observables.  That is, the target signature produced by one model should largely agree 

with the target signature produced the other.  In the latter, one is often seeking to isolate the physics 

associated with an observable (e.g., rigid response versus elastic response).  In the following 

comparisons, the TIER model is used with various limits on the included physics. 
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The first model-model comparison used the full target response of those listed in Table 7.  Figure 3 

shows the four metrics for targets at a 10-m horizontal range, where the 9×9 grid in each panel 

delineates the nine target rotations.  Figure 3a corresponds to the 2D cross-correlation metric, which by 

its very nature forces the “best” alignment of the data.  The main diagonal is the auto-correlation of 𝑠𝑖.  

The panels b - d are for the metrics associated with total power, and here the main diagonal is similar 

to the auto-correlation in that 𝑠𝑖 is compared to itself.  It is found that each panel contains prominent 

sub-diagonals.  These sub-diagonals reveal that a slice of data for one target appears to be the same as 

a slice from a different target. 

The second model-model comparison involved the free-field scattering from a target versus a 

proud target.  That is, the TIER model included only the direct path for free-field scattering response; 

while it included the direct path and 3 paths associated with interaction with the water-sediment 

interface for a proud target.  The targets of Table 7 were placed at a 25 m horizontal range from a 

linear SAS path.  Inspection of Figure 4 reveals that inclusion of only the direct path captures some of 

the response for a proud target (i.e., prominent diagonal lines).  This might be anticipated as the bottom 

interacting paths in the proud response are delayed in time with respect to the direct path and only 

interfere with the direct path’s trailing contribution.  Figure 4 suggests that 〈𝑠𝑖 , 𝑠𝑗〉3 may provide better 

discrimination of the targets than the other metrics. 

The third model-model comparison decomposed the full target response into a rigid component and 

an elastic component.  The rigid component is typically associated with specular/geometrical 

scattering, and an elastic response is associated with elastic modes of oscillation of the target.  The four 

metrics are displayed in Figure 5. 

E. Model-Data Comparisons 

The four metrics were applied to the TREX13 data listed in Table 6 and TIER simulated target 

responses for targets in Table 7.  Examples of the metrics are displayed in Figure 6 for targets at a 10 

m horizontal range.  For these comparisons, the TREX13 targets were tgt09, tgt11, tgt17, tgt20, and 

tgt21; while TIER simulations for all targets listed in Table 7 were performed.  Inspection of Figure 6 

suggests that the conventional 2D cross-correlation metric, 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐, performs better than the other 

metrics although 〈𝑠𝑖 , 𝑠𝑗〉3 does exhibit some sub-diagonals in the TIER versus TREX data regions.  

This result may be expected as 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐 by construction aligns the data and model result and selects 

only the maximum value in the magnitude of the slices; while the other metrics implicit assume an 

alignment. 

IMPACT/APPLICATIONS 

Four metrics were investigated.  The metric, based on 2D cross-correlation, is typically used in 

classification algorithms.   Model-model comparisons suggest the other metrics, based on total power, 

have a potential to provide alternative computational kernels for classifiers.  Applying the same four 

metrics to the model-data comparisons demonstrate that uncertainty in the experimental data 

necessitates an alignment of data in both the time and target-centered angle domains. 

For 𝑛 slices of data, 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐 requires 𝑛! + 𝑛 2D Fourier transforms to be computed.  The 

frequency-domain total power metric, 〈𝑠𝑖 , 𝑠𝑗〉2, requires only 𝑛 Fourier transforms of the time domain 

data.  The time-domain metric, 〈𝑠𝑖 , 𝑠𝑗〉3, requires 2𝑛 Fourier transforms to obtain complex-valued 
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signals.  Finally, the simplest metric, 〈𝑠𝑖 , 𝑠𝑗〉1, requires only an element-by-element matrix 

multiplication, which translates to a significant reduction of computational cost. 

RELATED PROJECTS 

The Performance Estimate (PE) program is a multi-institutional effort with participants from APL-

UW, ARL-PSU, GTRI, and NSWC-PC.  The goal of this effort is to establish procedures to assess the 

overall performance of a classification chain.  Although the TIER model has been used to generate 

nearly 2 TB of data for the PE program, the metrics investigated here have yet to be integrated into a 

(RVM or SVM) classifier. 

 

Figure 1.  The lower four signals 

correspond to targets at a 10 m 

horizontal range, and the upper four 

signals are for targets 12 m horizontal 

range.  The graph legend indicates the 

TIER simulations that contain only the 

direct path (i.e., free-field scattering) 

and the four ray paths. 
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Figure 2.  (a) TREX13 data for target 17 from Table 6.  (b) TIER simulations for a proud 2:1 

aluminum cylinder with only the direct path scattering.  (c) TIER simulations for the same cylinder, 

but including the additional paths associated with bottom bounces. 
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Figure 3.  The results of the four metrics applied to the full target response with the targets at a 10 m 

horizontal range.  (a) 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐, (b) 〈𝑠𝑖 , 𝑠𝑗〉1, 〈𝑠𝑖 , 𝑠𝑗〉2, and (d) 〈𝑠𝑖 , 𝑠𝑗〉3.  The 01-09 labeling above each 

coincides with sim01-sim09.   
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Figure 4:  Model-model comparison of scattering from a proud target (P1234) and a target in the free 

field (P1).  The targets were placed at a 25 m horizontal range. The panels correspond to (a) 
〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐, (b) 〈𝑠𝑖 , 𝑠𝑗〉1, (c) 〈𝑠𝑖 , 𝑠𝑗〉2, and (d) 〈𝑠𝑖 , 𝑠𝑗〉3. 
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Figure 5:  Model-model comparison for a decomposition of the full target response into a rigid 

component and an elastic component.  The targets were proud on a sand sediment interface at a 20 m 

horizontal range. The panels correspond to (a) 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐, (b) 〈𝑠𝑖 , 𝑠𝑗〉1, (c) 〈𝑠𝑖 , 𝑠𝑗〉2, and (d) 〈𝑠𝑖 , 𝑠𝑗〉3. 
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Figure 6:  Model-data comparison for TREX13 data and TIER model results.  The targets were 

proud on a sand sediment interface at a nominal horizontal range of 10 m. The panels correspond to 

(a) 〈𝑠𝑖 , 𝑠𝑗〉𝑐𝑐, (b) 〈𝑠𝑖 , 𝑠𝑗〉1, (c) 〈𝑠𝑖 , 𝑠𝑗〉2, and (d) 〈𝑠𝑖 , 𝑠𝑗〉3. 
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